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The novel compounds o-(chloromethyl)benzyldi-t-butylphosphine–borane and o-(methoxymethyl)ben-
zyldi-t-butylphosphine–borane have been synthesised in 54% and 51% yields, respectively, and have been
fully characterised. An improved method for the synthesis of a-chloro-a0-methoxy-o-xylene is also
reported.
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Figure 1. o-Substituted benzyldi-t-butylphosphine–boranes.
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Following the commercial success of 1,2-bis[(di-t-butylphosph-
ino)methyl]benzene as an ancillary chelating ligand for the palla-
dium-catalysed methoxycarbonylation of ethene,1 a lot of
interest has been generated in phosphine ligands containing an
o-xylene-based backbone. A number of subsequent patents have
been granted for catalytic processes that utilise 1,2-bis[(di-t-buty-
lphosphino)methyl]benzene,2 and the use of phosphine substitu-
ents other than t-butyl groups has also been investigated.3 There
are also recent examples wherein the two donor groups of the li-
gand are not identical in that the substituents on each phosphorus
atom differ.4,5

The synthesis of these Cs-symmetric diphosphine ligands is not
straightforward, as it is usually necessary to differentially substi-
tute the two donor atom positions of a starting material with
higher symmetry such as a,a0-dihydroxy-o-xylene or an a,a0-diha-
lo-o-xylene. At present, the synthesis of these ligands is achieved
through conversion of a,a0-dihydroxy-o-xylene to a cyclic sulfite,
followed by Ru-catalysed oxidation to the corresponding cyclic sul-
fate and then by two sequential nucleophilic substitution steps
with different lithium phosphides4 or lithium phosphide–boranes.5

This synthetic methodology is limited, however, by the availability
of the two nucleophilic reagents for the final synthetic steps. Here-
in, we report the synthesis and characterisation of the novel com-
pounds o-(chloromethyl)benzyldi-t-butylphosphine–borane 1 and
o-(methoxymethyl)benzyldi-t-butylphosphine–borane 2 (Fig. 1),
as potentially versatile reagents for the synthesis of Cs-symmetric
diphosphine ligands of this type.
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cer).
The synthesis of 1 was achieved via the reaction of a,a -di-
chloro-o-xylene with lithium di-t-butylphosphide–borane in
diethyl ether at room temperature (Scheme 1).6 The reaction of
stoichiometric quantities of the reactants results in a statistical dis-
tribution of products, and therefore a theoretical maximum 50%
yield of the desired product. However, using an excess of the xy-
lene reagent increases the proportion of the desired product, and
unreacted starting material can be removed from the crude prod-
uct by sublimation (and recycled for use in subsequent reactions).
The borane protecting group is key to this synthetic strategy for
three reasons: most importantly it prevents cyclisation to the cor-
responding cyclic phosphonium ion, it also renders the product an
easily handled air-stable crystalline solid and it protects the phos-
phorus atom from oxidation and other side reactions in any subse-
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Scheme 1. Synthesis of o-(chloromethyl)benzyldi-t-butylphosphine-borane 1.
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Scheme 2. Synthesis of a-chloro-a0-methoxy-o-xylene 3.
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Scheme 3. Synthesis of o-(methoxymethyl)benzyldi-t-butylphosphine-borane 2.
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quent reaction steps. The borane protecting group is easily re-
moved at any stage with an amine base.7

Attempts have been made to convert 1 into 2 using various
sources of methoxide, however in all cases, abstraction of the bor-
ane protecting group occurred followed by cyclisation of the start-
ing material to the corresponding cyclic phosphonium chloride. For
this reason, the synthesis of 2 requires the use of a-chloro-a0-
methoxy-o-xylene 3.� This compound was first synthesised by
Murahashi in crude form8 and subsequently synthesised and iso-
lated successfully by Mann and Stewart in 1954, requiring at least
three reaction steps from a commercially available material.9 To
the best of our knowledge, there have been no other published syn-
theses of this material. We have developed an improved method for
the synthesis of 3, requiring only one reaction step and producing
yields similar to those of Mann and Stewart.

As shown in Scheme 2, a,a0-dichloro-o-xylene was treated with
sodium methoxide in methanol at reflux.10 Again, the reaction of
stoichiometric quantities of the reactants resulted in a statistical
distribution of products, and therefore a theoretical maximum
50% yield of the desired product. However, when a solution of so-
dium methoxide in methanol was added dropwise to a refluxing
solution of excess a,a0-dichloro-o-xylene, the resulting yield of
compound 3 increased considerably. The desired product can be
isolated via two flash column chromatography steps to give an
overall yield of 62%. This method is significantly more atom eco-
nomic and time efficient than previously reported methods.

Compound 3 can be combined with lithium di-t-butylphos-
phide–borane in diethyl ether at 0 �C to generate the o-substituted
benzyldi-t-butylphosphine–borane 2 as an air-stable white crystal-
line solid in a 51% yield (Scheme 3).11

In conclusion, we have synthesised novel o-substituted benzyldi-
t-butylphosphine–boranes, which are potentially useful reagents for
the synthesis of new phosphine ligands containing an o-xylene-
based backbone. We have also developed a new method for the syn-
thesis of a-chloro-a0-methoxy-o-xylene, which is more atom eco-
nomic and time efficient than previously reported methods.
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